Most likely you are going to have to give several talks in your life. It’s less likely that someone is going to tell you how.
The structure of a good talk is already familiar to you.

- Introduction/Motivation
- Argument/Main points
- Closing/Conclusion
Introduction: Motivate the audience to listen to you

Create comfort

Common ground/Context

State (create?) the problem

So What? Consequences?

Create assurances

Outline Response

Example of an introduction: (1) Establish common ground

Number of transistors on an IC chip doubles every ~ 24 months

http://www.answers.com/topic/moore-s-law
Example of an introduction: (2) State (create) a problem.

Lithographic methods tend to be either fast or have small feature size.

**Photo-lithography**
- Light
- Mask
- Lens
- Sample w/ resist

**E-beam lithography**
- Applied Voltage
- Electron beam

Fast, min feature size $\sim \lambda/2$

Slow, min feature size 1 to 10 nm

http://www.spie.org/web/oer/february/feb99/microchip.htm
Example of an introduction: (3) State the gist of your response.

Self-Assembly: alternative, inexpensive route for fabrication

ZnO nanowires

CdSe quantum dots

http://www.lbl.gov/msd/PIs/Alivisatos/02/02_1alivisatos.html

7 nm Dia CdSe

http://www.lbl.gov/msd/PIs/Alivisatos/02/02_1alivisatos.html

7 nm Dia CdSe
Main Arguments: Find clearest, most direct route to your main point.

If members of the audience want to know more, they can ask.
One problem: the boundary affects the pattern!

Atomic Force Microscope image of diblock pattern.

Answer: do the experiment on samples 100,000 repeat spacings wide...
Do’s and Don’t for slides

• Make one point per slide, put it in the title
• Make Graphics as large and as simple as possible
• Label all axes
• Label all figures as to what they are (optical microscope image, etc.)
• Use font large enough so that the audience can read
• Limit yourself to less than 30 words per slide
• Pace yourself at approximately 1 to 2 minutes per slide
• Practice your talk:
  • Practice in a setting as much like your talk setting as possible
  • Memorize the first 2 or 3 sentences of your talk
  • Make sure the talk will run in the time allotted
• Don’t create a slide like this. I.e. filled with nothing but text:
  Ask yourself, is the audience listening to me or reading this text right now? If you have read this, you have the answer…
Choose a graceful conclusion

Here are some common choices...

- Restate main point of talk
- Illustrate a new application of the research
- Point out the problems which need to be solved and call for more research
- Coda
Self-Assembled patterns can also be used to make interesting electronic elements.

Example: new applications give the impression that your research is “deep”.

A black slide is a convenient way to remind yourself that the talk is over.
O.K.; but, what if your research is boring...

<table>
<thead>
<tr>
<th>Image</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image.png" alt="Image" /></td>
<td>I don’t want to paint that, it’s boring…</td>
</tr>
</tbody>
</table>

If your talk/research is boring that’s a message…
There's always is a richer context in which to cast your research.

That's not boring; you're boring!